Internal Impressum Sitemap
TU Dresden
Dept. for Innovative
Methods of Computing


Deciphering the principles of tumor invasion is essential for development of new therapy concepts. Besides more and more complex molecular investigations, mathematical modelling of selected aspects of tumour growth has become attractive within the last years (mathematical oncology). The importance of mathematical modeling approaches is also acknowledged by clinicians. We use cell-based models (in particular cellular automata). Simulations show that such models permit to investigate characteristic growth, invasion, and progression scenarios. In the future, in silico simulations shall allow to test therapies. Special emphasis lies on the extension of the models to three dimensions and to incorporate patient data.

Tumor Growth
Comparison of Simulation (left) and in vitro Experiment (right) (from: Tektonidis et al., Identification of intrinsic mechanisms for glioma invasion, J. Theor. Biol. 287, 131-147, 2011 [DOI]).

Moving Tumor Front
Movie of the simulation of a moving tumor front (from: Hatzikirou et al., Prediction of traveling front behavior in a lattice-gas cellular automaton model for tumor invasion, Comput. Math. Appl. 59, 2326-2339, 2010 [DOI]).


Prof. Dr. David Basanta (Moffitt Cancer Center, Tampa, Florida, US)
PD Dr. Dr. Ada Cavalcanti (MPI for Medical Research, Heidelberg)
Prof. Dr. Peter Friedl (Radboud University Nijmegen Medical Center)
Prof. Dr. Miguel Herrero (Complutense University Madrid)
Prof. Dr. Thomas Hillen (University of Alberta, Edmonton)
PD Dr. Barbara Klink (National Center of Genetics, Luxemburg)
Prof. Dr. Leoni Kunz-Schughart (Oncoray, University Clinics Dresden)
Prof. Dr. Simone Niclou (Luxemburg Institute of Health)
Prof. Dr. Karl Schaller (Geneva University Neurocenter)
Dr. Michael Seifert (Faculty of Medicine, University Clinics Dresden)
Prof. Matthias Simon (Bethel Clinics Bielefeld)
Prof. Dr. Olaf Wolkenhauer (University of Rostock)

Key Publications:

  • O. Ilina, P.G. Gritsenko, S. Syga, J. Lippoldt, C.A.M. La Porta, O. Chepizhko, S. Grosser, M. Vullings, G.-J. Bakker, J. Starruß, P. Bult, S. Zapperi, J.A. Käs, A. Deutsch, P. Friedl
    Cell–cell adhesion and 3D matrix confinement determine jamming transitions in breast cancer invasion
    Nature Cell Biology 22, 1103–1115, 2020 [DOI]

  • M. Seifert, G. Schackert, A. Temme, E. Schröck, A. Deutsch, B. Klink
    Molecular characterization of astrocytoma progression towards secondary glioblastomas utilizing patient-matched tumor pairs
    Cancers 12 (6), 1696, 2020 [DOI]

  • T. Buder, A. Deutsch, B. Klink, A. Voss-Böhme
    Patterns of tumor progression predict small and tissue-specific tumor-originating niches
    Front. Oncol., 8, 668, 2019 [DOI]

  • A. Dirkse, A. Golebiewska, T. Buder, P. V. Nazarov, A. Muller, S. Poovathingal,N. H. C. Brons, S. Leite, N. Sauvageot, D. Sarkisjan, M. Seyfrid, S. Fritah, D. Stieber, A. Michelucci, F. Hertel, C. Herold-Mende, F. Azuaje, A. Skupin, R. Bjerkvig, A. Deutsch, A. Voss-Böhme, S. P.Niclou
    Stem cell-associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment
    Nature Communications, 10 (1), 1787, 2019 [DOI]

  • R. Apweiler, T. Beissbarth, M. Berthold, N. Bluethgen, Y. Burmeister, O. Dammann, A. Deutsch, F. Feuerhake, A. Franke, J. Hasenauer, S. Hoffmann, T. Höfer, P. Jansen, L. Kaderali, U. Klingmüller, I. Koch, O. Kohlbacher, L. Küpfer, F. Lammert, D. Maier, N. Pfeifer, N. Radde, M. Rehm, I. Röder, J. Saez-Rodriguez, U. Sax, B. Schmeck, A. Schuppert, B. Seilheimer, F. Theis, J. Vera-González, O. Wolkenhauer
    Whither Systems Medicine?
    Experimental & Molecular Medicine, 50, e453, 2018 [DOI]

  • J. C. L. Alfonso, K. Talkenberger, M. Seifert, B. Klink, A. Hawkins-Daarud, H. Hatzikirou, K. R. Swanson, A. Deutsch
    The biology and mathematical modelling of glioma invasion: a review
    Journal of the Royal Society Interface 14 (136), 20170490, 2017 [DOI]

  • D. Reher, B. Klink, A. Deutsch, A. Voss-Böhme
    Cell adhesion heterogeneity reinforces tumour cell dissemination: novel insights from a mathematical model
    Biology Direct, 12, 1, 18, 2017 [DOI]

  • K. Talkenberger, E. A. Cavalcanti-Adam, A. Voss-Böhme, A. Deutsch
    Amoeboid-mesenchymal migration plasticity promotes invasion only in complex heterogeneous microenvironments
    Scientific Reports, 7, 9237, 2017 [DOI]

  • J. C. L. Alfonso, A. Kohn-Luque, T. Stylianopoulos, F. Feuerhake, A. Deutsch, H. Hatzikirou
    Why one-size-fits-all vaso-modulatory interventions fail to control glioma invasion: in silico insights
    Scientific Reports, 6, 37283, 2016 [DOI]

  • K. Böttger, H. Hatzikirou, A. Voss-Böhme, E. A. Cavalcanti-Adam, M. A. Herrero, A. Deutsch
    An Emerging Allee Effect Is Critical for Tumor Initiation and Persistence
    PLoS Comput Biol, 11, 9, e1004366, 2015 [DOI]

  • T. Buder, A. Deutsch, B. Klink, A. Voss-Böhme
    Model-Based Evaluation of Spontaneous Tumor Regression in Pilocytic Astrocytoma
    PLoS Comput Biol, 11, 12, e1004662, 2015 [DOI]

  • S. Hummert, K. Bohl, D. Basanta, A. Deutsch, S. Werner, G. Theißen, A. Schroeter, S. Schuster
    Evolutionary game theory: cells as players
    Mol. BioSyst., 10, 3044-3065, 2014 [DOI]

  • M. Tektonidis, H. Hatzikirou, A. Chauviere, M. Simon, K. Schaller, A. Deutsch
    Identification of intrinsic mechanisms for glioma invasion
    J. Theor. Biol., 287, 131-147, 2011 [DOI]

  • H. Hatzikirou, D. Basanta, M. Simon, K. Schaller, A. Deutsch
    'Go or Grow': the key to the emergence of invasion in tumour progression?
    Math Med Biol, dqq011, 2010 [DOI]

  • H. Hatzikirou, L. Brusch, C. Schaller, M. Simon, A. Deutsch
    Prediction of traveling front behavior in a lattice-gas cellular automaton model for tumor invasion
    Comput. Math. Appl., 59, 2326-2339, 2010 [DOI]

  • D. Basanta, A. Deutsch, H. Hatzikirou, M. Simon
    Evolutionary game theory elucidates the role of glycolysis in glioma progression and invasion
    Cell Prolif., 41, 980, 2008 [DOI]