documentation:course:module2
Table of Contents
Module 2: Morphogen gradients
Author: Lutz Brusch
Aim:
- Adapt an established theoretical model to a fundamental developmental patterning process.
- Thereby going through the typical modeling workflow seen in Module 1.
Description:
- Read abstract of Yu et al.
- Derive diffusion equation from 1st and 2nd Fick’s law
- Morphogen interpretation entails morphogen binding thereby eliminating it from (observed) diffusible pool → derive Eq. (1)
- Run Gradient.xml to see gradient building up
- Solve steady state of Eq. (1) analytically, c(x)=c0*exp(-x/lambda) lambda=sqrt(D/k)
- Find parameter value for D in the paper (Fig.3, why multiple?, relation between molecule weight and D?, fluorescent tag is source of artefacts – let’s see how big they are)
- Calculate k from lambda given in the text above Fig.4 (which D corresponds to the data?)
- Discuss role of Dynamin and Rab5 for ligand-receptor uptake
- Using Morpheus, reproduce the results of Fig.4B and document in protocol, verify role of Dynamin and Rab5
- Discuss role of right boundary condition, vary system size to explore changing steady state conc. at same position for no flux bc. in small vs. large system size
- Estimate D for naked Fgf8
- Simulate true morphogen profile and discuss difference to measured profile, just control case → this is a 50% tagging artefact
- Study Wolpert’s French Flag model, Discuss idea qualitatively
- Change gradient decay length and observe positions of tissue boundaries
- Change threshold values and observe positions of tissue boundaries
- Change cell size (node length) and observe positions of tissue boundaries
- Extend the morphogen PDE-model by a cell differentiation model = bistable reporter gene that controls differential gene expression downstream and is activated by the morphogen (Hill+additive morphogen-degradation), Which diffusion constant should the gene equation get? (D=0)
- Compare your model extension to Gradient_Interpreter.xml
- Simulate for different morphogen degradation rate and diffusion constant, observe position of emergent differentiation boundary
Paper:
- Wolpert L (1969). “Positional information and the spatial pattern of cellular differentiation”. J. Theor. Biol. 25 (1): 1–47. doi:10.1016/S0022-5193(69)80016-0. PMID 4390734. link
- Yu S R et al. (2009). “Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules” Nature 461, 533-536. doi:10.1038/nature08391. link
Morpheus models:
French Flag: Morphogen gradient
h Gradient.xml |h
<MorpheusModel version="1"> <Description> <Title>Example-MorphogenGradient</Title> </Description> <Space> <Lattice class="linear"> <Size value="100 0 0"/> <BoundaryConditions> <Condition boundary="x" type="noflux"/> <Condition boundary="-x" type="constant"/> </BoundaryConditions> <NodeLength unit="micron" value="1"/> </Lattice> </Space> <Time> <StartTime value="0"/> <StopTime value="500"/> <SaveInterval value="0"/> <RandomSeed value="1"/> </Time> <PDE> <Layer symbol="A" name="activator"> <Diffusion rate="1" unit="µm²/s"/> <Initial> <InitPDEExpression> <Expression>rand_uni(0,0.01)</Expression> </InitPDEExpression> </Initial> <BoundaryConditions> <Condition boundary="-x" value="1.0"/> </BoundaryConditions> </Layer> <System solver="runge-kutta" time-step="1"> <DiffEqn symbol-ref="A"> <Expression>- k * A</Expression> </DiffEqn> <Constant symbol="k" value="0.01"/> </System> </PDE> <Analysis> <SpaceTimeLogger interval="20"> <Layer symbol-ref="A"/> <Plot interval="500" every="0" terminal="png" persist="true"/> </SpaceTimeLogger> <Logger interval="10"> <Format string="A"/> <Input> <PDE mapping="all"/> </Input> <Plot terminal="png" persist="true"> <X-axis column="2"/> <Y-axis columns="5"/> <color-bar column="1"/> </Plot> </Logger> <!-- <Disabled> <Gnuplotter interval="500"> <Terminal name="png"/> <PDE symbol-ref="A"/> </Gnuplotter> </Disabled> --> </Analysis> </MorpheusModel>
h Gradient_Interpreter.xml |h
<MorpheusModel version="1"> <Description> <Title>Example-ActivatorInhibitor1D</Title> </Description> <Space> <Lattice class="linear"> <Size value="100 0 0"/> <BoundaryConditions> <Condition boundary="x" type="noflux"/> <Condition boundary="-x" type="constant"/> </BoundaryConditions> <NodeLength unit="micron" value="1"/> </Lattice> </Space> <Time> <StartTime value="0"/> <StopTime value="500"/> <SaveInterval value="0"/> <RandomSeed value="1"/> </Time> <PDE> <Layer symbol="A" name="activator"> <Diffusion rate="1" unit="µm²/s"/> <Initial> <InitPDEExpression> <Expression>rand_uni(0,0.01)</Expression> </InitPDEExpression> </Initial> <BoundaryConditions> <Condition boundary="-x" value="1.0"/> </BoundaryConditions> </Layer> <Layer symbol="G" name="Gene"> <Diffusion rate="0"/> <Initial> <InitPDEExpression> <Expression>0</Expression> </InitPDEExpression> </Initial> </Layer> <System solver="runge-kutta" time-step="0.01"> <DiffEqn symbol-ref="A"> <Expression>- k * A</Expression> </DiffEqn> <Constant symbol="k" value="0.01"/> <DiffEqn symbol-ref="G" name="threshold activation"> <Expression>A+G^2/(0.2^2+G^2)-1*G</Expression> </DiffEqn> </System> </PDE> <Analysis> <SpaceTimeLogger interval="20"> <Layer symbol-ref="A"/> <Plot interval="100" every="0" terminal="png" persist="true"/> </SpaceTimeLogger> <Logger interval="10"> <Format string="A"/> <Input> <PDE mapping="all"/> </Input> <Plot terminal="png" persist="true"> <X-axis column="2"/> <Y-axis columns="5"/> <color-bar column="1"/> </Plot> </Logger> <!-- <Disabled> <Gnuplotter interval="500"> <Terminal name="png"/> <PDE symbol-ref="A"/> </Gnuplotter> </Disabled> --> <SpaceTimeLogger interval="5"> <Layer symbol-ref="G"/> <Plot interval="100" every="0" terminal="png" persist="true"/> </SpaceTimeLogger> </Analysis> </MorpheusModel>
documentation/course/module2.txt · Last modified: 12:49 14.12.2012 by Walter