

Miscellaneous models

French Flag: Morphogen gradient

Wolpert's French Flag

Introduction

This example shows Wolpert's classical French Flag model. Depending on the local concentration of a morphogen, cells adopt one of three cell types based on internal thresholds.

Model description

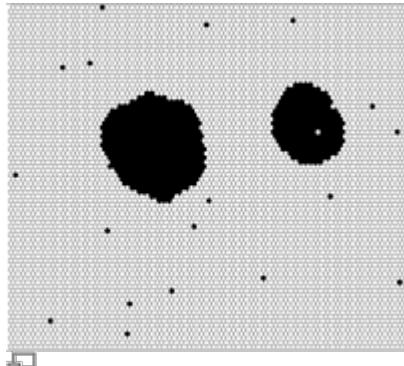
The model sets up a morphogen gradient in the x direction PDE. Note that no diffusion is used, since we use the steady-state solution of diffusion.

The cells in `CellType` register the (average) local morphogen concentration using `PDEReporter`. Based on the specified threshold values, they choose an identity `I` as defined in the Equation.

Note that this model is not time-dependent. Time is therefore set from `StartTime 0` to `StopTime 0`.

Things to try

- Change the physical length of the domain by editing `Space → NodeLength` that controls the physical size per lattice site.
- Change the model such that the morphogen gradient is set up by production and diffusion, using `Diffusion` and a `System` with `DiffEqn`. That is, change the model into a time-dependent model.


Model

h FrenchFlag.xml |h

extern>http://imc.zih.tu-dresden.de/morpheus/examples/Miscellaneous/FrenchFlag.xml

In Morpheus GUI: Examples → Miscellaneous → FrenchFlag.xml.

Particle Aggregation: FlipCells

Aggregation of moving particles

Introduction

This models approximates an interacting particle system (IPS) model of particle aggregation. Each black dot represents a particle that moved due to spin flips with random neighbors. The particles perform random walks in which the probability of moving depends on the number of neighboring cells.

Model description

Each lattice site (white or black) counts the number of particles (black neighboring sites) using a **NeighborsReporter**.

The probability of movement of each particle is made dependent on its number of neighbors by using it in the **Condition** of **FlipCells**. When this condition is satisfied, the particle changes positions with a random neighboring lattice site.

A PopulationReporter is used to return the fraction of isolated black particles. This number is logged and plotted using the Logger.

Things to try

- Change the parameter p.

Model

h ParticleAggregation.xml |h

```
extern>http://imc.zih.tu-dresden.de/morpheus/examples/Miscellaneous/Particle
Aggregation.xml
```

In Morpheus GUI: Examples → Miscellaneous → ParticleAggregation.xml

From:
<https://imc.zih.tu-dresden.de/wiki/morpheus/> - **Morpheus**

Permanent link:
<https://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=examples:miscellaneous&rev=1629303038>

Last update: **18:10 18.08.2021**

