17:41 14.12.2025 1/4 miscellaneous

Miscellaneous models

Minimal model

```
<MorpheusModel>
     <minimal/>
</MorpheusModel>
```


Minimal valid XML model

Introduction

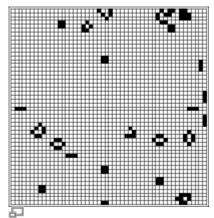
This example does nothing - expect being the minimal valid Morpheus model.

Such a model is generated when choosing File → New.

Model description

The basic model only includes the required nodes MorpheusModel, Description, Space and Time. Their required nodes and attributes are added recursively, such as Lattice class and StopTime value.

Things to try


• Invalidate this minimal model by editing it (but keeping it well-formed). When opening this model in morpheus-gui, it triggers a warning saying that what went wrong, and how it was solved. Check the Fixboard to see the changes that are made to model.

Model

h Minimal.xml |h

In Morpheus GUI: File → New.

Game of Life: Cellular Automata

Conway's Game of Life

Introduction

This example models probably the best-known classic cellular automaton (CA) model: Conway's Game of Life.

It shows an alternative use of System for synchronous updating of Equations.

Model description

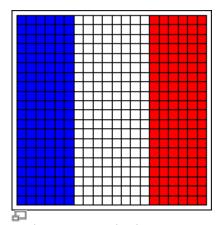
In this model, the lattice is filled with cells of size 1. Each cell counts the number of neighboring cells

17:41 14.12.2025 3/4 miscellaneous

that are 'alive' and acts accordingly. The rules that make up the Game of Life are implemented in a System of Equations in which all Equations are updated synchronously.

Things to try

• Change the Neighborhood from a Moore (2nd order) to von Neumann (1st order).


Model

h GameOfLife.xml |h

extern>http://imc.zih.tu-dresden.de/morpheus/examples/Miscellaneous/GameOfLi
fe.xml

In Morpheus GUI: File → Examples → Miscellaneous → GameOfLife.xml

French Flag: Morphogen gradient

Wolpert's French Flag

Introduction

This example shows Wolpert's classical French Flag model. Depending on the local concentration of a morphogen, cells adopt one of three cell types based on internal thresholds.

Model description

The model sets up a morphogen gradient in the x direction PDE. Note that no diffusion is used, since we use the steady-state solution of diffusion.

The cells in CellType register the (average) local morphogen concentration using PDEReporter. Based on the specified threshold values, they choose an identity I as defined in the Equation.

Note that this model is not time-dependent. Time is therefore set from StartTime 0 to StopTime 0.

Things to try

- Change the physical length of the domain by editing Space → NodeLength that controls the physical size per lattice site.
- Change the model such that the morphogen gradient is set up by production and diffusion, using Diffusion and a System with DiffEqn. That is, change the model into a time-dependent model.

Model

h FrenchFlag.xml |h

extern>http://imc.zih.tu-dresden.de/morpheus/examples/Miscellaneous/FrenchFl
ag.xml

In Morpheus GUI: File → Examples → Miscellaneous → FrenchFlag.xml.

From:

https://imc.zih.tu-dresden.de/wiki/morpheus/ - Morpheus

Permanent link:

https://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=examples:miscellaneous&rev=1375235046

Last update: **03:44 31.07.2013**

