12:48 15.12.2025 1/6 cellular potts

Cellular Potts models

Differential Adhesion: cell sorting in two dimensions

Yellow cells engulf the red cells as a result of differential adhesion

Introduction

This model shows the original cellular Potts model (a.k.a. Glazier-Graner model) of cell sorting based on the Steinberg's differential adhesion hypothesis.

Model description

Two CellTypes are defined, each of which has a VolumeConstraint specifying the cell's target area/volume. In the CPM element, the MetropolisKinetics can be configured and the Interaction energies between cell types are specified.

Although cells can be initialized as single points using e.g. the InitCircle plugin, in this example, the Nodes of each Cell in the CellPopulations are given explicitly. In fact, these Populations are restored results of a previous simulation.

The simulation shows two populations of spatially resolved cells that initially organized in a mosaic fashion. Through differential adhesion, the motile cells sort out and re-organize into an distribution in which one cell type engulfes the other.

Snapshots of the simulation are saved to files named [Title][Time].xml.gz. These files containing intermediate and result states can be opened and used as initial conditions for new simulations. Remember to change StartTime and StopTime accordingly.

Model

h CellSorting_2D.xml |h

extern>http://imc.zih.tu-dresden.de/morpheus/examples/CPM/CellSorting_2D.xml

In Morpheus GUI: File → Examples → CPM → CellSorting_2D.xml

Reference

Graner F, Glazier J. Simulation of Biological Cell Sorting Using a Two-Dimensional Extended Potts Model. *Phys. Rev. Lett.* 69 (13): 2013–2016, 1992.

Proliferation in two dimensions

Growing cell population

Introduction

This model show a simulation of a growing cell population, using the cellular Potts model.

Model description

This model specifies CellType which has a VolumeConstraint and a Proliferation plugin.

12:48 15.12.2025 3/6 cellular_potts

In the Proliferation plugin, the Conditions for a cell to divide are given. Here, each cell that has more than 90% of the target volume has a small probability to divide. Once a division has taken place, the Equation defined in the Triggers elements are triggered.

Model

h Proliferation_2D.xml |h

extern>http://imc.zih.tu-dresden.de/morpheus/examples/CPM/Proliferation_2D.x
ml

In Morpheus GUI: File → Examples → CPM → Proliferation_2D.xml

Persistence

Persistence of individual cells causes self-organized collective motion

Introduction

This example shows self-organized collective motion of cells as a result of persistence ('cellular inertia'). A similar model has recently been used in (Czirok et al., 2013).

Description

The model is simulated in a circular domain with constant boundary conditions, which can be set up in Lattice / Domain / Circle. The value for the constant boundary is specified in CPM / BoundaryValue.

Try it!

- Change the boundary conditions from circular=constant to x/y=periodic and observe the resulting collective motion.
- Change the decay-time of Persistence (specifying the 'memory').

Model

h Persistence_2D.xml |h

extern>http://imc.zih.tu-dresden.de/morpheus/examples/CPM/Persistence 2D.xml

In Morpheus GUI: File → Examples → CPM → Persistence_2D.xml

Reference

Czirók A, Varga K, Mehes E, Szabo A, Collective cell streams in epithelial monolayers depend on cell adhesion. *New J. Phys.* 15 075006, 2013.

Proliferation in three dimensions

Cell population grown from single initial cell

12:48 15.12.2025 5/6 cellular potts

Introruction

This model show a CPM simulation of a growing cell population in 3D.

Model description

This model specifies CellType which has a VolumeConstraint and a Proliferation plugin. In the Proliferation plugin, the Conditions for a cell to divide are given. Here, each cell that has more than 90% of the target volume has a small probability to divide. Once a division has taken place, the Equation defined in the Triggers elements are triggered.

In this model, two medium cell types have been defined. One of these (called matrix) is used to represent a matrix with higher adhesivity. This is done by (1) defining the 'matrix' cell type as a BoundaryCondition of the -z boundary in the CPM and (2) providing lower contact energy for cell-matrix interaction than for cell-medium interactions.

The simulation is visualized using the TiffPlotter that saves TIFF image stacks that can be loaded by image analysis software such as Fiji and displayed using Fiji's 3D Viewer plugin.

Model

h Proliferation_3D.xml |h

extern>http://imc.zih.tu-dresden.de/morpheus/examples/CPM/Proliferation_3D.x
ml

In Morpheus GUI: File → Examples → CPM → Proliferation_3D.xml

From:

https://imc.zih.tu-dresden.de/wiki/morpheus/ - Morpheus

Permanent link:

https://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=examples:cellular_potts&rev=1375138366

Last update: 00:52 30.07.2013

