
19:41 10.09.2025 1/6 Technical specification

Morpheus - https://imc.zih.tu-dresden.de/wiki/morpheus/

Technical specification

Solvers

Ordinary differential equations (ODE)

Morpheus implements explicit finite different solvers of numerical integration of ODEs:

Euler's method: 1st order
Heun's method (a.k.a. midpoint): 2nd order
Runge-Kutta's method: 4th order

and stochastic differential equations (SDEs):

Euler-Maruyama's method for 1st and 2nd order.

The latter is automatically used when a stochastic white noise term rand_norm(0,[amplitude]) is
included as below, but is not available for Runge-Kutta.

 <DiffEqn solver="heun" time-step="0.01" symbol-ref="X">
 <Expression> rand_norm(0, noise) </Expression>
 </DiffEqn>
 <Constant symbol="noise" value="1e-3"/>

Fixed time stepping

Solvers with adaptive time stepping, such as the Runge-Kutta-Fehlberg method, are not available.
Currently, we use fixed time stepping methods, because this greatly simplifies temporal scheduling of
updates for automated model integration.

Stiff systems

Although the implemented explicit solvers are general and flexible, they are not applicable to stiff
systems. Stiff systems are ODE systems that can change so rapidly that explicit solvers will result in
numerical instability, unless the time step is extremely small. This situation may occur in systems
where very large and small values are multiplied.

Lattice

Lattice structure

Morpheus is a lattice-based simulation platform. This means that the spatial models are discretized on

http://en.wikipedia.org/wiki/Euler_method
http://en.wikipedia.org/wiki/Heun's_method
http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_method
http://en.wikipedia.org/wiki/Euler%E2%80%93Maruyama_method
http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta%E2%80%93Fehlberg_method
http://en.wikipedia.org/wiki/Stiff_equation

Last
update:
11:27
02.08.2013

documentation:tech_specs https://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=documentation:tech_specs&rev=1375435624

https://imc.zih.tu-dresden.de/wiki/morpheus/ Printed on 19:41 10.09.2025

a lattice.

The following lattices are available:

linear 1D lattice
square 2D (orthogonal) lattice
hexagonal 2D lattice
cubic 3D (orthogonal) lattice

Boundary conditions

See description in FAQ

Membrane Properties

For MembraneProperties, properties that are resolved on the surface of cells, Morpheus uses a
special lattices with polar coordinate system

circular 1D lattice (for 2D models)
spherical 2D lattice (for 3D models)

Diffusion

Method of lines

Partial differential equations (PDEs) are numerically approximated by separating the reaction and
diffusion steps using the method of lines. This method discretizes the PDE into a system of coupled
ODEs. These ODEs are then solved using the numerical methods mentioned above.

Diffusion equation

For diffusion, Morpheus uses the simple and general forward Euler scheme. The time step δt is
automatically adjusted according to the CFL condition to guarantuee numerical stability. Alignment of
multidimensional lattices to 1D memory (using valarrays) results in highly efficient implementation of
diffusion.

The unconditionally stable method of alternate direction implicit (ADI) is also implemented (for
constant (Dirichlet) boundary conditions), but is currently not used.

Motility

https://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=documentation:faq#modeling
http://www.scholarpedia.org/article/Method_of_lines
http://en.wikipedia.org/wiki/Courant%E2%80%93Friedrichs%E2%80%93Lewy_condition
http://www.cplusplus.com/reference/valarray/
http://en.wikipedia.org/wiki/Alternating_direction_implicit_method

19:41 10.09.2025 3/6 Technical specification

Morpheus - https://imc.zih.tu-dresden.de/wiki/morpheus/

Cellular Potts model

Cell shape and motility is implemented according to the cellular Potts model (CPM)(Graner and
Glazier, 1992).

In this model formalism, biological cells are represented as a domains of lattices sites
\boldsymbol{x} with identical index σ. In its simplest form (ignoring differential adhesion),
the changes in configuration of cells on the lattice are governed by the Hamiltonian:

$H=\sum_{\sigma > 0} \lambda_V (v_\sigma - V_t)^2 + \sum_{\sigma > 0} \lambda_P (p_\sigma -
P_t)$

where v_σ and p_σ are the actual volume and perimeter of the cell with index
σ and V_t and P_t are the target volume and perimeter. Deviations from these target
values increase the free energy H according to the scalars λ_V and λ_P.

Monte Carlo

The CPM is a Monte Carlo method in which the lattice is updated by randomly sampling lattice sites.

Within the CPM, a Monte Carlo step (MCS) is often taken as a discrete unit of time. A single Monte
Carlo step is defined as the number of random sampled updates equal to the number of lattice sites,
i.e. within one step, each lattice sites would have had chance to be updated.

Metropolis kinetics

In each update:

1. A lattice site \boldsymbol{x} is chosen at random.

2. From the neighborhood N of \boldsymbol{x}, a second lattice site $\boldsymbol{x'}$ is
chosen.

3. Then, the change in free energy ΔH is calculated if the state σ at $\boldsymbol{x'}$
($\sigma_\boldsymbol{x'}$) would be copied to \boldsymbol{x} according to the specific
Hamiltonian H.

4. The proposed update is always accepted when $\Delta H<0$ and is accepted with a Boltzmann
probability when $\Delta H>0$:

$P(\sigma_\boldsymbol{x'} \rightarrow \sigma_\boldsymbol{x})=\begin{cases} 1 &\mbox{if } \Delta
H<0 \\ e^{{(\Delta H-Y)}/T} &\mbox{otherwise} \end{cases}$

where T (for 'temperature') modulates the probability of unfavorable updates to be accepted and
can be taken to represent local protrusions/retractions of the cell membrane. The parameter Y (for
'yield') is sometimes used to avoid oscillations with energy-neutral updates. This can be said to
represent cytoskeletal resistance to membrane fluctuations.

http://en.wikipedia.org/wiki/Cellular_Potts_model
http://dx.doi.org/10.1103%2FPhysRevLett.69.2013
http://dx.doi.org/10.1103%2FPhysRevLett.69.2013
http://en.wikipedia.org/wiki/Monte_Carlo_method

Last
update:
11:27
02.08.2013

documentation:tech_specs https://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=documentation:tech_specs&rev=1375435624

https://imc.zih.tu-dresden.de/wiki/morpheus/ Printed on 19:41 10.09.2025

Random numbers

By default, Morpheus uses the Mersenne Twister 19937 pseudo-random number generator included in
the CPP GNU compiler (TR1). Alternatively, the Boost RNG can be used (specified in CMake options).

Note: In multithreaded simulations, each thread gets its own RNG (the random seeds for which are
based on the specified seed of the master thread RNG). Therefore, to reproduce simulation results,
not only the random seed needs to be specified (Time/RandomSeed), but also the same number of
threads (Settings → Local→ threads).

Plugins

Morpheus provides a plugin interface to extend the feature set. Plugins are written in C++ and
requires recompilation from source. Therefore, this type of extensibility is only available when
building from source (currently limited to developers and collaborators).

Morpheus has interfaces for different types of plugins:

Initialization: Plugins with methods to define an initial condition. Examples: TIFFReader and
InitPDEExpression.
Reporters: Plugins with customizable spatial mappings used in situations in which spatial
mapping cannot be automated due to ambiguity. Examples are NeighborsReporter and
PDEReporter.
Motility: Plugins with methods for cell movement. Examples: Chemotaxis and Persistence.
Shape: Plugins with methods to constrain cell shape. Examples: VolumeConstraint and
SurfaceConstraint.
Analysis: Plugins for data logging, plotting or processing. Examples: Gnuplotter and
HistogramLogger.
Miscellaneous: Set of plugins that do not fit in the categories above. Examples:
Proliferation and InsertMedium.

Writing new plugins requires you to add three files:

Header (MyPlugin.h): declares variables and functions
Implementation (MyPlugin.cpp): implements the core functions
XSD (MyPlugin.xsd): specifies the rules what constitutes valid XML input (used by GUI)

See an example for an Analysis plugin below.

Plugin interfaces

http://en.wikipedia.org/wiki/Mersenne_twister
http://www.boost.org/doc/libs/1_53_0/doc/html/boost_random.html

19:41 10.09.2025 5/6 Technical specification

Morpheus - https://imc.zih.tu-dresden.de/wiki/morpheus/

Plugin interface provides interfaces for various types of plugins.

Header file (MyPlugin.h)

example header file

Implementation (MyPlugin.cpp)

example implementation file

https://imc.zih.tu-dresden.de/wiki/morpheus/lib/exe/fetch.php?media=documentation:tech_specs:plugin1.png
https://imc.zih.tu-dresden.de/wiki/morpheus/lib/exe/fetch.php?media=documentation:tech_specs:plugin1.png
https://imc.zih.tu-dresden.de/wiki/morpheus/lib/exe/fetch.php?media=documentation:tech_specs:plugin2.png
https://imc.zih.tu-dresden.de/wiki/morpheus/lib/exe/fetch.php?media=documentation:tech_specs:plugin2.png
https://imc.zih.tu-dresden.de/wiki/morpheus/lib/exe/fetch.php?media=documentation:tech_specs:plugin3.png
https://imc.zih.tu-dresden.de/wiki/morpheus/lib/exe/fetch.php?media=documentation:tech_specs:plugin3.png

Last
update:
11:27
02.08.2013

documentation:tech_specs https://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=documentation:tech_specs&rev=1375435624

https://imc.zih.tu-dresden.de/wiki/morpheus/ Printed on 19:41 10.09.2025

XML Schema (MyPlugin.xsd)

example XML schema file

From:
https://imc.zih.tu-dresden.de/wiki/morpheus/ - Morpheus

Permanent link:
https://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=documentation:tech_specs&rev=1375435624

Last update: 11:27 02.08.2013

https://imc.zih.tu-dresden.de/wiki/morpheus/lib/exe/fetch.php?media=documentation:tech_specs:plugin4.png
https://imc.zih.tu-dresden.de/wiki/morpheus/lib/exe/fetch.php?media=documentation:tech_specs:plugin4.png
https://imc.zih.tu-dresden.de/wiki/morpheus/
https://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=documentation:tech_specs&rev=1375435624

	Technical specification
	Solvers
	Ordinary differential equations (ODE)
	Fixed time stepping
	Stiff systems

	Lattice
	Lattice structure
	Boundary conditions
	Membrane Properties

	Diffusion
	Method of lines
	Diffusion equation

	Motility
	Cellular Potts model
	Monte Carlo
	Metropolis kinetics

	Random numbers
	Plugins
	Plugin interfaces
	Header file (MyPlugin.h)
	Implementation (MyPlugin.cpp)
	XML Schema (MyPlugin.xsd)

