03:20 02.02.2026 1/9 Technical specification

Technical specification

Overview

Morpheus is built out of the following building blocks:

Equation solvers: numerical solvers for systems of (differential) equations (ODE, SDE, PDE)
Lattice: space discretization for both PDEs and discrete cell models (e.g. CPM)

Diffusion: redistribution of concentration of species in PDE

Motility: cell shape and motility of discrete cells in CPM

These components can be combined into complex models using
e Automated model integration: scheduling and spatial mapping
New features can be added through implementation of

e Plugins: framework for extensibility, based on various plugin interfaces

Lattice

Continuous Discrete
Concentrations Cells

Multi-scale models are constructed by combining various modules.

Solvers

Ordinary differential equations

Morpheus implements various explicit finite different solvers of numerical integration of ODEs:

e Euler's method: 1st order
e Heun's method (a.k.a. midpoint): 2nd order

Morpheus - https://imc.zih.tu-dresden.de/wiki/morpheus/

https://imc.zih.tu-dresden.de/wiki/morpheus/lib/exe/fetch.php?media=documentation:tech_specs:morpheusstructure_small.gif
http://en.wikipedia.org/wiki/Euler_method
http://en.wikipedia.org/wiki/Heun's_method

Last
update:
15:19
25.07.2013

documentation:tech_specs https://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=documentation:tech_specs&rev=1374758351

e Runge-Kutta's method: 4th order

Stochastic differential equations

In addition, Morpheus implements a method to scale the noise amplitude in stochastic ODEs (SDEs):
e Euler-Maruyama's method.

The latter is used automatically when using Euler or Heun method with a noise term. Note:

Maruyama's method is not available when using Runge-Kutta's solver.

Limitations

Solvers with adaptive time stepping, such as the Runge-Kutta-Fehlberg method, are not available.
Currently, we use fixed time stepping methods, because this greatly simplifies temporal scheduling of
updates for automated model integration. Incorporation of adaptive time stepping is planned for a
future release, though (see ODEint below).

Although these implemented explicit solvers are general and flexible, they are not applicable to stiff
systems. Stiff systems are ODE systems that can change so rapidly that explicit solvers will result in
numerical instability, unless the time step is extremely small. This situation may occur in systems
where very large and small values are multiplied.

Planned: ODEint integration

Currently, Morpheus implements its own solvers. This was chosen because of the requirements of

e parsing of text-entered math expressions using muparser, and
e control over precise scheduling of updates.

However, we are planning to convert to the use of the extremely flexible numerical solver package
ODEint that will soon be integrated into the well-known boost library.

This will extend the available methods for numerical integration of ODE solvers. For instance,
adaptive time stepping solvers will become available. Implicit solvers, to solve stiff systems, may also
become available (but will require the specification of the Jacobian).

Lattice

Lattice structure

Morpheus is a lattice-based simulation platform. This means that the spatial models are discretized on
a lattice.

https://imc.zih.tu-dresden.de/wiki/morpheus/ Printed on 03:20 02.02.2026

http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_method
http://en.wikipedia.org/wiki/Euler%E2%80%93Maruyama_method
http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta%E2%80%93Fehlberg_method
http://en.wikipedia.org/wiki/Stiff_equation
http://muparser.beltoforion.de/
http://headmyshoulder.github.com/odeint-v2/
http://www.boost.org/doc/libs/1_53_0/libs/numeric/odeint/doc/html/index.html

03:20 02.02.2026 3/9 Technical specification

The following lattices are available:

e linear 1D lattice

e square 2D (orthogonal) lattice
e hexagonal 2D lattice

e cubic 3D (orthogonal) lattice

Membrane Properties

For MembraneProperties, properties that are resolved on the surface of cells, Morpheus uses a
special lattices with polar coordinate system

e circular 1D lattice (for 2D models)
» spherical 2D lattice (for 3D models)

Boundary conditions

See description in FAQ

Diffusion

Method of lines

Partial differential equations (PDEs) are numerically approximated by separating the reaction and
diffusion steps using the method of lines. This method discretizes the PDE into a system of coupled
ODEs. These ODEs are then solved using the numerical methods mentioned above.

Diffusion equation
For diffusion, Morpheus uses the simple and general forward Euler scheme. The time step δt is
automatically adjusted according to the CFL condition to guarantuee numerical stability.

Alignment of multidimensional lattices to 1D memory (due to use of valarrays) results in a high
computational efficiency of the implementation of diffusion.

The unconditionally stable method of alternate direction implicit (ADI) is also implemented (for
constant (Dirichlet) boundary conditions), but is currently not used.

Transport equation

Higher order derivatives to model transport equations in PDEs are currently being developed and are
planned for a future release.

Morpheus - https://imc.zih.tu-dresden.de/wiki/morpheus/

https://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=documentation:faq#modeling
http://www.scholarpedia.org/article/Method_of_lines
http://en.wikipedia.org/wiki/Courant%E2%80%93Friedrichs%E2%80%93Lewy_condition
http://www.cplusplus.com/reference/valarray/
http://en.wikipedia.org/wiki/Alternating_direction_implicit_method

Last
update:
15:19
25.07.2013

Motility

documentation:tech_specs https://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=documentation:tech_specs&rev=1374758351

Cellular Potts model
Cell shape and motility is implemented according to the cellular Potts model (CPM)(Graner and
Glazier, 1992).

In this model formalism, biological cells are represented as a domains of lattices sites
\boldsymbol{x} with identical index σ. In its simplest form (ignoring differential adhesion),
the changes in configuration of cells on the lattice are governed by the Hamiltonian:

$H=\sum_{\sigma > 0} \lambda_V (v_\sigma - V_t)"2 + \sum_{\sigma > 0} \lambda P (p_\sigma -
P t)$

where v_σ and p_σ are the actual volume and perimeter of the cell with index
σ and V_t and P_t are the target volume and perimeter. Deviations from these target
values increase the free energy H according to the scalars λ_V and λ_P.

Monte Carlo

The CPM is a Monte Carlo method in which the lattice is updated by randomly sampling lattice sites.

Within the CPM, a Monte Carlo step (MCS) is often taken as a discrete unit of time. A single Monte
Carlo step is defined as the number of random sampled updates equal to the number of lattice sites,
i.e. within one step, each lattice sites would have had chance to be updated.

Metropolis kinetics

In each update:
1. A lattice site \boldsymbol{x} is chosen at random.

2. From the neighborhood N of \boldsymbol{x}, a second lattice site $\boldsymbol{x'}$ is
chosen.

3. Then, the change in free energy ΔH is calculated if the state σ at $\boldsymbol{x'}$
($\sigma_\boldsymbol{x'}$) would be copied to \boldsymbol{x} according to the specific
Hamiltonian H.

4. The proposed update is always accepted when $\Delta H<0$ and is accepted with a Boltzmann
probability when $\Delta H>0$:

$P(\sigma_\boldsymbol{x'} \rightarrow \sigma_\boldsymbol{x})=\begin{cases} 1 & mbox{if } \Delta
H<0 \\ e~ {{(\Delta H-Y)}/T} &mbox{otherwise} \end{cases}$

where T (for 'temperature') modulates the probability of unfavorable updates to be accepted and

https://imc.zih.tu-dresden.de/wiki/morpheus/ Printed on 03:20 02.02.2026

http://en.wikipedia.org/wiki/Cellular_Potts_model
http://dx.doi.org/10.1103%2FPhysRevLett.69.2013
http://dx.doi.org/10.1103%2FPhysRevLett.69.2013
http://en.wikipedia.org/wiki/Monte_Carlo_method

03:20 02.02.2026 5/9 Technical specification

can be taken to represent local protrusions/retractions of the cell membrane. The parameter Y (for
'vield') is sometimes used to avoid oscillations with energy-neutral updates. This can be said to
represent cytoskeletal resistance to membrane fluctuations.

Random number generators (RNG)

By default, Morpheus uses the Mersenne Twister 19937 pseudo-random number generator included in
the CPP GNU compiler (TR1). Alternatively, the Boost RNG can be used (specified in CMake options).

Note: In multithreaded simulations, each thread gets its own RNG (the random seeds for which are
based on the specified seed of the master thread RNG). Therefore, to reproduce simulation results,
not only the random seed needs to be specified (Time/Random/seed), but also the same number of
threads (Settings - Local- threads).

Model integration
To be documented.

Symbolic references and spatial mapping

In order to reference variables in mathematical terms in a multi-model environment one requires to
identify the respective sub-model a variable is defined in and to perform a mapping between different
(spatial) contexts, i.e. determine the corresponding CPM cell from a spatial position to access a cell
property.

This ensemble of a variable definition and contextual meta-data we call a symbol, which can be
referenced all over the multi-model environment. (Also allows to iteration over the elements od a
symbol context).

In case of spatial ambiguity Morpheus provides a set of predefined Reporters to take care for the
spatial mapping. For example, a PDEReporter should be defined to compute the average
concentration of a diffusible within the area occupied by a particular cell.

Example Autocrine Chemotaxis

<|MAGE>

h AutocrineChemotaxis.xml |h

extern>
http://imc.zih.tu-dresden.de/morpheus/examples/Multiscale/AutocrineChemotaxi
s.xml

Morpheus - https://imc.zih.tu-dresden.de/wiki/morpheus/

http://en.wikipedia.org/wiki/Mersenne_twister
http://www.boost.org/doc/libs/1_53_0/doc/html/boost_random.html

Last
update:
15:19
25.07.2013

documentation:tech_specs https://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=documentation:tech_specs&rev=1374758351

Time scheduling

The time scheduler takes care (i) to evolve numerical schemes in time, (ii) to schedule and execute
spatial data mappings, and (iii) to run event-based schemes, i.e. schemes which are run in certain
time intervals. In order to combine different schemes in a single scheduler we exploit the method of
fractional time steps. The basis is for our automatic scheduling is extensive knowledge of the data
dependencies of the schemes and what kind of updated data they provide. This information is
represented as a symbolic dependency graph based on the expressions, input and output symbols
defined within the schemes.

We envisage the following criteria for the design of our scheduler implementation.

e Time stepping for all schemes shall be automatically adjusted, as far as possible, to the
maximum permitted time step.

e In addition, time stepping can be overridden from in the MDL, allowing for user guided step
sizes.

e The order of the specification of the schemes in the MDL shall not matter.

e The sequential order of updates within a temporal step shall be determined by the symbolic
interdependency graph.

e Tightly coupled systems, often bearing circular dependencies, have to be defined in a System
tag to be updated jointly.

A robust automatic scheduling methods necessarily needs reliable information about the internal
limits of numerical schemes and its external dependencies. External dependencies are extracted as a
dependency tree. Internal time step limits are reported by the schemes and can be adoptive in time.
Solving Reaction-Diffusion Systems, for example, using a finite difference scheme and operator
splitting allows us to schedule the diffusion solver depending on the CFL condition and running the
reaction part independently.

Schematic Representation of the Time Scheduler

Initialisation:

1. Adjusting time steps:

o Continuous Time Solvers: Ensure numerical stability and .

o Mappers: Ensuring updated data is available as needed, but not computed more often
than necessary. We let the time step size depend on the time steps of the downstream
dependency tree (e.g a spatial Reporter shall run as often as it's output is needed by
another scheme), and on stability criteria of the numerical schemes (e.g. CFL for
Diffusion).

2. Sorting of schemes to be updated sequentially: The order is determined by the dependency
tree. Circular dependencies cannot be sorted unambiguously and thus are rejected.
3. Initialisation of initial time state (e.g. mappings)

Main Loop: 3 Phase Time Stepper:

https://imc.zih.tu-dresden.de/wiki/morpheus/ Printed on 03:20 02.02.2026

03:20 02.02.2026 7/9 Technical specification

1. Phase I: Synchronous Time Evolution Schemes. The schemes are executed sequentially or in
parallel, but the results are buffered as intermediates and only applied at the very end of that
phase, such that any scheme exclusively depends on the previous time step solutions. Tightly
coupled systems, defined in a System tag, are evolved by a system solver.

2. Time Step Progression

3. Phase II: Sequentially Updated Schemes (Mappers, Events), depending on data that has
already been updated.

4. Phase III: Output generation in Analysis plug-ins. Can be performed in any order, just
because there is nor interdependency.

5. Checkpointing of simulation state.

Plugins

Morpheus provides a plugin interface to extend the feature set. Plugins are written in C++ and
requires recompilation from source. Therefore, this type of extensibility is only available when
building from source (currently limited to developers and collaborators).

Morpheus has interfaces for different types of plugins:

e Initialization: Plugins with methods to define an initial condition. Examples: TIFFReader and
InitPDEExpression.

e Reporters: Plugins with customizable spatial mappings used in situations in which spatial
mapping cannot be automated due to ambiguity. Examples are NeighborsReporter and
PDEReporter.

e Motility: Plugins with methods for cell movement. Examples: Chemotaxis and Persistence.

e Shape: Plugins with methods to constrain cell shape. Examples: VolumeConstraint and
SurfaceConstraint.

* Analysis: Plugins for data logging, plotting or processing. Examples: Gnuplotter and
HistogramLogger.

e Miscellaneous: Set of plugins that do not fit in the categories above. Examples:
Proliferation and InsertMedium.

Writing new plugins requires you to add three files:

e Header (MyPlugin.h): declares variables and functions
e Implementation (MyPlugin.cpp): implements the core functions
e XSD (MyPlugin.xsd): specifies the rules what constitutes valid XML input (used by GUI)

See an example for an Analysis plugin below.

Plugin interfaces

Morpheus - https://imc.zih.tu-dresden.de/wiki/morpheus/

Last

qulage: documentation:tech_specs https://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=documentation:tech_specs&rev=1374758351
25.07.2013
Core Pl itializati
tarf
I?EtLﬂtt'_ElEl] 1
e Motility
gatCallTypes |) Chamotax e
getCell() DirectedMotion z
getFOELayer| |
i Reporters
Cell Reporter POEReporter
HeighborsRep MembraneRep
createCell()
patRodel) 2
ST Analysis
&

Plugin interface provides interfaces for various types of plugins.

Header file (MyPlugin.h)

=Analysis>
I

MyPlugin celltype="cells" symbol=":" intervals"1.@"/=

<Analysise»

¥#include “core/intecfaces.h”

#lnclude "coref/simalation. h”™

#include “core/gelltyps.h

class MyPlugin i public Analysis_Listemer Inherit interface
{

pub 1

DECLARE FLUGIN(“MyPlugin®);
HetworkLogger(j{}:

sid loadFronXMLconst XMLKode)
d metify{double time);
d dmit(double time);

string symboletr, celltypestr;
SymbolAccessor<double> symbol;

shared ptr<const CallTypas> “;,J,t,m_: Symbﬂl rE-fEfE-n(:ES

example header file

Implementation (MyPlugin.cpp)

#include “myPlugin. b
REGISTER_PLUGIN(MyFlagin};

i MyPlugin: : loadFromIML|-onet KMLEode MNode)
{
hnalyala Listener::loadProsfMl) Heds j;
getXMLAttribute |Hede, "calliype”, calltypaats);
geEXMLAttribute [Hode, " synbol”, symbolste);
3

vald MyPlogim: sinde(double Eims)
{
Analysis Listeperiiinic{time)z
cmlltype = CPH:ifindCellType (celltypesto)

symbol = SIMiifindSymbol<double>|synbolstr, celltypel:
]
vaid MyPlagin: ieetify(dousle time)
i
Analysis Listener::motlfy(tiss);
forjuint e=d; ¢ < gmlltypa-rgeelalllba() . aizaf); eov){
double walus = CPHiigetCell) cells|e] j.get{ symbal }:
4f do scmsthing
¥
ff owedte o file
]

example implementation file

Read parameters

Use symbols

https://imc.zih.tu-dresden.de/wiki/morpheus/

Printed on 03:20 02.02.2026

https://imc.zih.tu-dresden.de/wiki/morpheus/lib/exe/fetch.php?media=documentation:tech_specs:plugin1.png
https://imc.zih.tu-dresden.de/wiki/morpheus/lib/exe/fetch.php?media=documentation:tech_specs:plugin1.png
https://imc.zih.tu-dresden.de/wiki/morpheus/lib/exe/fetch.php?media=documentation:tech_specs:plugin2.png
https://imc.zih.tu-dresden.de/wiki/morpheus/lib/exe/fetch.php?media=documentation:tech_specs:plugin2.png
https://imc.zih.tu-dresden.de/wiki/morpheus/lib/exe/fetch.php?media=documentation:tech_specs:plugin3.png
https://imc.zih.tu-dresden.de/wiki/morpheus/lib/exe/fetch.php?media=documentation:tech_specs:plugin3.png

03:20 02.02.2026 9/9

Technical specification

XML Schema (MyPlugin.xsd)

Analysiss
“MyPlugin interval="1.8" celltype=" 1 symbol=
=Analysis

=i §3:schema= Do
<p§:complexType name="MyPlugin''= -
=xsiannotation=
x5 idocumentat ion=Text shown im GUI</xs:documentation
=/ x5 iannotat ion>

Esrattribute name="interv type="cpnDouble" use="req
wxsiattribute names"celltype” Types"cpoCe ypeRef usgs" o
isiattribute names"synt type="cpnDoubleSymbolRef” uses'

< ®5 camplexTypes
<=/ ng: schenas

&

example XML schema file

From:
https://imc.zih.tu-dresden.de/wiki/morpheus/ - Morpheus

Permanent link:

Last update: 15:19 25.07.2013

Morpheus - https://imc.zih.tu-dresden.de/wiki/morpheus/

https://imc.zih.tu-dresden.de/wiki/morpheus/lib/exe/fetch.php?media=documentation:tech_specs:plugin4.png
https://imc.zih.tu-dresden.de/wiki/morpheus/lib/exe/fetch.php?media=documentation:tech_specs:plugin4.png
https://imc.zih.tu-dresden.de/wiki/morpheus/
https://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=documentation:tech_specs&rev=1374758351

	Technical specification
	Overview
	Solvers
	Ordinary differential equations
	Stochastic differential equations
	Limitations
	Planned: ODEint integration

	Lattice
	Lattice structure
	Membrane Properties
	Boundary conditions

	Diffusion
	Method of lines
	Diffusion equation
	Transport equation

	Motility
	Cellular Potts model
	Monte Carlo
	Metropolis kinetics
	Random number generators (RNG)

	Model integration
	Symbolic references and spatial mapping
	Time scheduling
	Schematic Representation of the Time Scheduler
	Initialisation:
	Main Loop: 3 Phase Time Stepper:

	Plugins
	Plugin interfaces
	Header file (MyPlugin.h)
	Implementation (MyPlugin.cpp)
	XML Schema (MyPlugin.xsd)

