
06:57 02.02.2026 1/4 Model description language

Morpheus - https://imc.zih.tu-dresden.de/wiki/morpheus/

Model description language

The Morpheus model description language (MDL) is a domain-specific extensible mark-up language
(XML) for the specification of multiscale multicellular simulation models. It has been developed to
separate the process of modeling from numerical implementation to allow users to specify simulation
models in terms of familiar biological and mathematical concepts rather than in a general-purpose
programming language (see sections [sub:Domain-specific-language] and [sec:Glossary-of-main]).
This makes modeling of multiscale multicellular systems accessible for researchers and students
without computational expertise. And, importantly, it structures the scientific workflow in the
development of simulation models is which becoming increasingly important as the systems and
models under investigation are growing more complex.

In Morpheus, models are fully specified by single XML files written in a human-readable format. This
circumvents complex models to be distributed among multiple source and parameter files, and avoids
the need for (re)compilation of source code after model changes. Moreover, encapsulation of model
description in single files eases editing, archiving, checkpointing and the exchange of models among
users.

The key enabling technique that allows concise descriptions of (potentially complex) multiscale
models is the use of symbols, symbol references and expressions (section [sub:Symbols-and-
expressions] and [sec:Glossary-of-mathematical]). This provides an intuitive mathematical interface
and provide a high level of flexibility in the model description language. Importantly, it enables
integration of models to be performed automatically, as explained in section [sec:Model-integration].

Mark-up language (XML) and XML schema description (XSD)

The Morpheus model description language (MDL) is based on the extensible mark-up language (XML)
that enables the use of human-readable domain-specific terminology and provides an extensible
interface to adapt to the ongoing development of the simulation environment. From a computation
perspective, it provides a clear structure that can be easily parsed and is independent of operating
systems.

The terminology, grammatical rules and constraints for the structure and content of valid MDL
documents are laid down in a XML schema description (XSD). As such, the XSD defines the MDL. The
XSD describes e.g. whether elements are required or optional, how many occurrences are allows,
what attributes are allowed and what value types each attribute requires, and contains
documentation describing elements and attributes.

The standalone graphical user interface application (morpheus-gui) uses these rules to validate model
files (checking whether a certain XML file conforms to these rules) as well as to restore outdated
model files (adding or removing elements and attributes to make model compliant to newer version of
the MDL). Most importantly, however, morpheus-gui uses the XSD in the editor to constrain the
editing of model descriptions as to guarantee its validity. For instance, it ensures that required
elements (such as Time) cannot be removed, or that only certain data types (double or string) can be
entered for specific attributes. Morpheus-gui also uses the XSD to provide context-sensitive
documentation, upon selection of a particular element or attribute in the editor.

Unfortunately, the XSD schema language has several shortcoming that may lead to unintuitive
behavior of the GUI. For instance, the XSD schema language does not support mutually exclusive



Last
update:
14:59
01.08.2013

documentation:model_description_language https://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=documentation:model_description_language&rev=1375361996

https://imc.zih.tu-dresden.de/wiki/morpheus/ Printed on 06:57 02.02.2026

attributes nor co-occurrence constraints which would allow the occurrence of elements to depend on
values of other elements.

Nevertheless, the XML and XSD files allow for a separation of simulator and the graphical user
interface by forming interfaces between the two standalone applications (morpheus and morpheus-
gui). (see figure [fig:XML-XSD-1]). During compilation of the simulator, the XSD document describing
the MDL is assembled from many small XSD files that specify the rules for each individual part of the
simulator. This XSD document is subsequently built into morpheus-gui to use it for editing, as
explained above. Upon execution of a model from morpheus-gui, the XML document is written to file,
and passed to morpheus as a command line argument.

This separation between simulator and GUI is useful to allow headless simulations, without graphical
interface, and enables simulation on remote computing on high performance computing (HPC)
resources. If morpheus simulator is installed on a remote HPC, it can be controlled remotely from a
desktop computer by sending XML files over a network connection.

Domain specific language

An important design goal for the Morpheus MDL has been to be able to express multiscale
multicellular models in terms of familiar biological and mathematical terms instead of a general-
purpose programming code or scripting language. In other words, the MDL should be a domain-
specific language, a descriptive formal language that is suitable for computer processing while
allowing models to be expressed in the terminology and at the level of abstraction of the intended
application domain. This makes models easier to develop and renders them self-documenting.

Having multicellular systems biology as its application domain, the choice of biological and
mathematical terminology follows naturally. The MDL uses biological concepts such as CellType and
Populations to define simulated entities, and concepts such as Proliferation and Chemotaxis to define
cellular processes. In addition, the MDL employs mathematical terms such as Equation and Systems
of DiffEqn (differential equations) to specify relations and changes of variables. Yet, the inclusion of
some computational terms related to the numerical implementation cannot be avoided. For instance,
a time-step must be specified for numerical solvers. Moreover, it is of course necessary to specify the
duration of simulation and the size or resolution of the simulated domain. The MDL therefore uses a
mixture of biological, mathematical and computational terminology. A glossary of the terminology of
the Morpheus model description language is available in section [sec:Glossary-of-main].

The domain-specificity of the MDL also influences its structure. For instance, whereas reaction-
diffusion models describing morphogens must be specified outside of the definition of a CellType, the
specification of ordinary differential equations (ODE) describing intracellular processes is only allowed
inside a CellType. As another example, the specification of cellular Potts-related parameters (CPM) is
separated from the definition of CellTypes to allow cell-based models to be specified without CPM-like
cell motility.

Symbols and expressions

The use of symbolic references and expressions provides an important level of model flexibility in the
model description language. Mathematical expressions can be used to relate model variables to each
other, describe how variables change or to analyze model behavior. They are written as plain-text



06:57 02.02.2026 3/4 Model description language

Morpheus - https://imc.zih.tu-dresden.de/wiki/morpheus/

formulae in terms of user-defined symbols. This makes it straightforward to translate handwritten or
published mathematical models into simulation models (see table [tab:Translation-of-DiffEqn]).

%\marginnote{\protect\includegraphics[width=5mm]{marginnote}}

A glossary of the available mathematical constructs included in the Morpheus model description
language is included in section [sec:Glossary-of-main].

Symbol definitions

Declaration of each model variable requires the specification of a symbol that is used as a reference
to the quantity it represents. Symbols must be provided for user-specified constants (Constant) and
variables such as cell-bound properties in cell-based models (CellType\fshyp{}Property) and species
in reaction-diffusion models (PDE\fshyp{}Layer). Optionally, symbols can also be specified for built-in
model variables such as lattice size (Lattice\fshyp{}Size), location (Lattice\fshyp{}SpaceSymbol) and
time (Time\fshyp{}TimeSymbol). These allow users to define spatial gradients, time-dependent
functions, etc.

Symbol references and expressions

Symbol definitions and references

Symbols can be referenced in two ways (see figure [fig:symbol-def-ref]): First, symbols can be used in
expressions (Expression) written as plain text using the typical operators like +,-,*,^ to form algebraic
expressions. Such expressions are used as the right-hand-side (rhs) of functions, (differential)
equations and event conditions (Function, Equation, DiffEqn, Condition). Symbols in expressions
represent the independent variables or input symbols whose values can be read but not assigned.

Second, symbols can also be referenced using the attribute symbol-ref, which provides an interface
for reading values as well as assigning new values to symbols. These can act both as independent
variable, input symbols, and dependent variables, i.e. output symbols. Note that some symbols, such
as those referring to constants, lattice size or time, are read-only and cannot be assigned via symbol
references.

Metadata

Symbols are more than a simple reference to a value. They contain metadata about the (sub)model in
which they are defined. This metadata is derived from the XML path in which their definition occurs.
At initialization, this is used to associate each symbol with a particular type describing its identity.
This way, the simulator knows whether a symbol refers to either a property of a cell, or a species in a
reaction-diffusion system. Likewise, built-in symbols like time, space, or cell ID are also associated
with their type. The metadata allows Morpheus to differentiate between the various symbol types,
and adjust the reading or assigning of values according to each type.

Resolving symbol references



Last
update:
14:59
01.08.2013

documentation:model_description_language https://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=documentation:model_description_language&rev=1375361996

https://imc.zih.tu-dresden.de/wiki/morpheus/ Printed on 06:57 02.02.2026

How a symbol reference should be resolved depends on (1) the context in which it is used, and (2) the
context in which the symbol has been defined. In multi-scale models these contexts may be different.
Therefore, like symbol definitions, symbol references are also associated with their context, derived
from their occurrence in the model (XML path). Yet, whereas symbol definitions and their metadata
are registered during initialization, the resolving symbol references is performed at runtime, as
explained in more detail in section [sub:Mapping-spatial-data].

From:
https://imc.zih.tu-dresden.de/wiki/morpheus/ - Morpheus

Permanent link:
https://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=documentation:model_description_language&rev=1375361996

Last update: 14:59 01.08.2013

https://imc.zih.tu-dresden.de/wiki/morpheus/
https://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=documentation:model_description_language&rev=1375361996

	Model description language
	Mark-up language (XML) and XML schema description (XSD)
	Domain specific language
	Symbols and expressions
	Symbol definitions
	Symbol references and expressions
	Metadata
	Resolving symbol references



