Cell specific polarisation vector $\vec{p}$, with $\theta(\vec{p})$ the orientation of this vector
Motility System Dynamics
Motility strength $\mu$ defines energy gradient for a displacement $\Delta C$:
$$ \Delta H = - \mu(a*\delta C \cdot \vec{p})$$
Every Monte Carlo step (MCS), angular noise $\xi$ is applied:
$$ \tfrac{\Delta \theta}{\text{\small MCS}} = \xi $$
Motility System Dynamics
Taxis is integrated into $\vec{p}$ by adaptation dynamics
Contact inhibition of locomotion
Event based reorientation for 'run and tumble' and frustration reorientation
time scaling $j$
$$ \tau' = j \tau $$
time scaling $j$
$\mu'=j\mu, \,\, \xi'=\sqrt{j} \xi$
$$ \Delta H = - \mu(\delta C \cdot \vec{p}), \,\, \tfrac{\Delta \theta}{\text{mcs}} = \xi $$
spatial scaling $k$
$$ \eta' = k \eta $$
Scaling by Magno et al.
$J'=J/k, \,\, T'=T/k, \,\, \tau'=\tau*k^2,$
$A'=k^2 A, \,\, \lambda'_a=\lambda_a/k^4,$
$P'=k P, \,\,\ \lambda'_p=\lambda_p/k^2$
Cell motility scaling
$$ \Delta H = - \mu(\delta C \cdot \vec{p}), \,\, \tfrac{\Delta \theta}{\text{mcs}} = \xi $$
$$ \mu'=\mu/k^2, \,\, \xi'=\xi/\sqrt{k}, \,\, \tau'= k \tau $$